8 research outputs found

    AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture

    Get PDF
    The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices

    A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.)

    Get PDF
    Common bean (Phaseolus vulgaris L.), one of the most important grain legume crops for direct human consumption, faces many challenges as a crop. Domesticated from wild relatives that inhabit a relatively narrow ecological niche, common bean faces a wide range of biotic and abiotic constraints within its diverse agroecological settings. Biotic stresses impacting common bean include numerous bacterial, fungal, and viral diseases and various insect and nematode pests, and abiotic stresses include drought, heat, cold, and soil nutrient deficiencies or toxicities. Breeding is often local, focusing on improvements in responses to biotic and abiotic stresses that are particular challenges in certain locations and needing to respond to conditions such as day-length regimes. This review describes the major breeding objectives for common bean, followed by a description of major genetic and genomic resources, and an overview of current and prospective marker-assisted methods in common bean breeding. Improvements over traditional breeding methods in CB can result from the use of different approaches. Several important germplasm collections have been densely genotyped, and relatively inexpensive SNP genotyping platforms enable implementation of genomic selection and related marker-assisted breeding approaches. Also important are sociological insights related to demand-led breeding, which considers local value chains, from farmers to traders to retailers and consumers

    Evaluation of linkage disequilibrium, population structure, and genetic diversity in the U.S. peanut mini core collection

    No full text
    Background Due to the recent domestication of peanut from a single tetraploidization event, relatively little genetic diversity underlies the extensive morphological and agronomic diversity in peanut cultivars today. To broaden the genetic variation in future breeding programs, it is necessary to characterize germplasm accessions for new sources of variation and to leverage the power of genome-wide association studies (GWAS) to discover markers associated with traits of interest. We report an analysis of linkage disequilibrium (LD), population structure, and genetic diversity, and examine the ability of GWA to infer marker-trait associations in the U.S. peanut mini core collection genotyped with a 58 K SNP array. Results LD persists over long distances in the collection, decaying to r2 = half decay distance at 3.78 Mb. Structure within the collection is best explained when separated into four or five groups (K = 4 and K = 5). At K = 4 and 5, accessions loosely clustered according to market type and subspecies, though with numerous exceptions. Out of 107 accessions, 43 clustered in correspondence to the main market type subgroup whereas 34 did not. The remaining 30 accessions had either missing taxonomic classification or were classified as mixed. Phylogenetic network analysis also clustered accessions into approximately five groups based on their genotypes, with loose correspondence to subspecies and market type. Genome wide association analysis was performed on these lines for 12 seed composition and quality traits. Significant marker associations were identified for arachidic and behenic fatty acid compositions, which despite having low bioavailability in peanut, have been reported to raise cholesterol levels in humans. Other traits such as blanchability showed consistent associations in multiple tests, with plausible candidate genes. Conclusions Based on GWA, population structure as well as additional simulation results, we find that the primary limitations of this collection for GWAS are a small collection size, significant remaining structure/genetic similarity and long LD blocks that limit the resolution of association mapping. These results can be used to improve GWAS in peanut in future studies – for example, by increasing the size and reducing structure in the collections used for GWAS

    Databases and Information Integration for the Medicago truncatula Genome and Transcriptome

    No full text
    An international consortium is sequencing the euchromatic genespace of Medicago truncatula. Extensive bioinformatic and database resources support the marker-anchored bacterial artificial chromosome (BAC) sequencing strategy. Existing physical and genetic maps and deep BAC-end sequencing help to guide the sequencing effort, while EST databases provide essential resources for genome annotation as well as transcriptome characterization and microarray design. Finished BAC sequences are joined into overlapping sequence assemblies and undergo an automated annotation process that integrates ab initio predictions with EST, protein, and other recognizable features. Because of the sequencing project's international and collaborative nature, data production, storage, and visualization tools are broadly distributed. This paper describes databases and Web resources for the project, which provide support for physical and genetic maps, genome sequence assembly, gene prediction, and integration of EST data. A central project Web site at medicago.org/genome provides access to genome viewers and other resources project-wide, including an Ensembl implementation at medicago.org, physical map and marker resources at mtgenome.ucdavis.edu, and genome viewers at the University of Oklahoma (www.genome.ou.edu), the Institute for Genomic Research (www.tigr.org), and Munich Information for Protein Sequences Center (mips.gsf.de)
    corecore